NOISE MAPPING OF DENSELY POPULATED NEIGHBORHOODS - EXAMPLE OF COPACABANA

Fernando Augusto de Noronha Castro Pinto (fcpinto@ufrj.br) and Maysa Daniela Moreno Mardones (maysamoreno@yahoo.com)
Universidade Federal do Rio de Janeiro - Depto./Progr. Engenharia Mecânica
Centro de Tecnologia - Bloco G sl. 204 - Cidade Universitária - Rio de Janeiro - RJ CEP 21949-900

Abstract. Copacabana is one of the most famous neighborhoods of the city of Rio de Janeiro but suffers from a high inhabitant density. One of the many environmental problems faced is related to noise pollution. In order to assess not only the noise levels, to which the population is exposed, but also to quantify the influence of architectonical aspects, the paper presents the steps taken towards a simulation of the noise emissions and propagation in this area. The results of the simulation are compared to measurements in different locations and daily-hours. The discrepancies are analyzed and the methodology is discussed in view of its application to a huge urban center like the city of Rio de Janeiro.

Keywords: Noise pollution, Simulation, Noise mapping, Traffic noise.

1. INTRODUCTION

Urban noise is directly associated to human activities, especially in urbanized areas, and related to transport and industry development.

Copacabana is one of the most famous neighborhoods of Rio de Janeiro. Since the decade of 1960 the increasing fame has attracted more people than the area could hold comfortably. Therefore Copacabana suffered with real estate speculation until became full of residential buildings of many floors, mostly with very small apartment units.

This high population and tourist density causes the increase of traffic volume and the accompanying noise pollution, as expected in great urban centers. The increase of noise pollution is unsustainable and needs measures to be reduced and contained, since it is not only a source of annoyance, but also may lead to public health problems.

The assessment of noise in large cities represents a biggest challenge, owing to the high population density and the combination of different noise sources contributing to the overall acoustical environment. The assessment method must be carefully chosen in order to accurately describe it.

Due to the complexity, and mainly laborious and expensive task of measuring the acoustic situation of a place, simulations may be used...
through a prediction software informing noise levels in a faster way. It
is clear that the simulation results must be compared to real measures,
which can in turn be used to calibrate the model.

2. NOISE MAPS

A noise map is a tool that delivers visual information of the acoustic
behavior of a geographic area either in a specified moment or in a
statistical base. They are considered as tools to improve or to preserve
the quality of the environment regarding noise pollution, allowing for
a comprehensive look at the problem of multiple sources and receivers.
It is also an excellent tool for urban planning.

The use of noise maps techniques as a planning tool allows among
other things (Santos and Valado, 2004):
- Quantification of noise in the studied area;
- Evaluation of the population exposition;
- Creation of a database, for urban planning with localization of noisy
activities and mixed and sensible zones;
- Modeling of different scenarios of future evolution;
- Prediction of impact noise of projected infrastructure and industrial
activities.

In Europe, the Directive 2002/49/EC of the European Parliament
and of the Council, of 25 June 2002 relating to the assessment and
management of environmental noise imposes to its Member States the
elaboration of noise maps for cities with more than 250,000 inhabitants,
due no later than 30 June 2007. These maps shall be reviewed, and
revised if necessary, at least each five years after the date of their
preparation.

In Brazil the confection of noise maps is still not an obligation. In Rio
de Janeiro specifically the legislation only foresees maximum acceptable
levels of noise according to the occupation type or urban zone. This
legislation is supported by the corresponding federal legislation that
deals with the problem in a similar way.

The elaboration of maps can be made using real measurements in
points previously determined, using only prediction models through
simulations or, in a mixed system, simulations can be complemented
and verified with actual measurements.
3. ACOUSTIC SIMULATION

The recently developed tools for acoustic simulation had a great impact on the field of prediction and analysis of the acoustic environment of a city, thanks to the use of complex equations and calculations at modern computers. Nevertheless the calculation time and the required resources may be very restrictive, but the simulation applications are becoming still more powerful, allowing a more trustworthy analysis in lesser time (Tarrero et al., 2005).

The study of the acoustic impact in a urban area considers the knowledge of a lot of parameters as shown in table I:

<table>
<thead>
<tr>
<th>Source</th>
<th>Traffic Noise</th>
<th>Type of vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type of engines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean Velocity</td>
</tr>
<tr>
<td></td>
<td>Industrial noise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rail noise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entertainment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surroundings</th>
<th>Road surface</th>
<th>Building heigths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Street width</td>
<td>Absorption coefficients(facades)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment</th>
<th>Humidity</th>
<th>Temperature</th>
<th>Wind</th>
</tr>
</thead>
</table>

| Demographic parameters | Number of inhabitants | Number of units per building |

4. SIMULATION PROGRAM

To create a noise map from Copacabana in this work the software CADNA-A was used. CADNA-A (Computer Aided Design Noise Abatement) is a program for calculation and presentation of noise levels from environmental noise, as well as a program for prediction and assessment in relation to the acoustic annoyance. It works in Windows with a simple user interface incorporating PCSP technology (Parallel Controlled
Software Processing). It is thus possible to work in parallel, in the same project, using a computer local area network.

CADNA-A takes national guidelines and standards into account for the calculations. Each type of sound source, whether road, railway, or any general point, line or area source is considered according to the regulations valid for the relevant type of source. Since the Brazilian standards do not impose rules in order to take into account the propagation, reflection, diffraction and other effects to obtain noise maps from the simulations, the work presented here is based on the German rules.

With CADNA-A it is possible to get statistical values of acoustic impact in the population with graphical presentations in horizontal, vertical and in facade maps.

5. DESCRIPTION OF THE AREA

Due to high concentration of population, shops and a heavy traffic from particular vehicles and public transportation, the area to be studied covers most of Copacabana, in the South of Rio de Janeiro. Firstly a general simulation of the neighborhood traffic noise levels was done, considering the volume of daily traffic, the average speed, the width of the streets, the type of asphalt and the height of the buildings. To compare the values simulated with real measurements, a smaller sector was considered in this work.

5.1. SIMULATION

The topography of the region is input as basic data from a CAD model of Rio de Janeiro. The database used in simulations do not include only the topography of the Copacabana, but also the building heights individually. This kind of information shall be available for the majority of the great cities. After the topological information is correctly inserted into the software database, which can be done in a very automated way from CAD programs, the noise sources are identified. In this case the main source of noise is the urban traffic. This is characterized by diverse parameters (type of vehicles, number of vehicles) and surroundings (height of the building, coefficient of absorption, type of floor, width of the streets) influencing in noise propagation. With these data the program calculates the noise map of the selected zone. To prove its veracity, the simulated values are compared with experimental measurements.

With the parameters of the sector introduced, the software generates the map of noise shown in figure 1, which corresponds to the noise levels at 4 meters of height. Figure 2 shows an aerial photograph of the same region, approximately.
A smaller sector is chosen to establish a comparison with real measured data. This sector corresponds to the central zone of the neighborhood of Copacabana, between the Atlantic Avenue and Toneleros Street and between streets Raimundo Corrêa and Siqueira Campos. This area was selected due to the high number of vehicles in the main streets, though also presenting some quieter places. The daily traffic volume data was informed by CET-Rio, the traffic engineering company of the
5.2. Measurements

Experimental measurements consist of the equivalent sound pressure level (L_{eq}) in each receiving point, for a period of at least 5 minutes. The Environmental Board of the City of Rio de Janeiro adopted the L_{eq} as metric for the evaluation of the impact of environmental noise in the city legislation.

The L_{eq} as a continuous equivalent sound pressure level for a determined measurement point, obtained from a time varying noise in a defined period of time, is equal to the level of a steady noise that would correspond to the same acoustic energy received during this interval of time. The L_{eq} can be used to assess continuous noise sources like traffic, industries or entertainment events, for example, and proves useful when two situations are to be compared (WHO, 1999).

In order to perform the experimental measurements 8 points have been considered in major corners of the chosen sector in Copacabana, described in table 2, and figure 4. The measurements were done in three
Figure 3. Aerial photo of the sector of Copacabana chosen for measurements (Google earth)

Figure 4. Simulation of the sector corresponding to figure 3

periods of time; morning, afternoon and night and in different days of the week in each point. The receivers are situated at approximately 1,5m height from the ground.

The equipment used was an integrating sound pressure level meter Brüel & Kjaer Type 2233 previously acoustically calibrated.
Table II. Locations for L_{eq} (5 minutes) measurements in Copacabana

<table>
<thead>
<tr>
<th>Point</th>
<th>Localization</th>
<th>Measurement dB(A)</th>
<th>Simulation dB(A)</th>
<th>Difference dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Domingos Ferreira/Figueiredo Magalhães</td>
<td>67.4</td>
<td>69.8</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>Av.N.S.Copacabana/Figueiredo Magalhães</td>
<td>74.3</td>
<td>74.7</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>Av.N.S.Copacabana/Santa Clara</td>
<td>73.5</td>
<td>73.6</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>Av. Barata Ribeiro/Raimundo Corrêa</td>
<td>73.8</td>
<td>72.5</td>
<td>-1.3</td>
</tr>
<tr>
<td>5</td>
<td>Av. Barata Ribeiro/Anita Garibaldi</td>
<td>71.8</td>
<td>73.3</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>Av. Barata Ribeiro/Siqueira Campos</td>
<td>73.6</td>
<td>75.6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Rua Tonelero/Figueiredo Magalhães</td>
<td>71.7</td>
<td>75.8</td>
<td>4.1</td>
</tr>
<tr>
<td>8</td>
<td>Rua Tonelero/Santa Clara</td>
<td>71.5</td>
<td>72.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>

5.3. Comparison of results

Analyzing the results it can be seen that the differences between the measured and simulated values are small, being less than 2 dB. The exceptions are point 7, at the corner of the Tonelero and Figueiredo Magalhães streets, where the difference was of 4.1 dBA, and point 1 at the corner from Domingos Ferreira and Figueiredo Magalhães with 2.4 dB.

In point 7, the subway station Siqueira Campos appears as an important source, which was not considered in the previous simulations, justifying the difference. Further simulations must consider this source as well, along the traffic noise. Point 1 is located in a region of low traffic volume at Figueiredo Magalhães, thus being more sensible to individual fluctuations of number of vehicles passing by during the actual measurements, when compared to the statistical noise level obtained from the simulation. A longer period for the L_{eq} measurement, or a closer look at the actual traffic on that street portion may bring the difference to a value less than 2 dB.

According to the Urban Zones of the City of Rio de Janeiro (stand from 1999), shown in figure 5, the Administrative Region of Copacabana corresponds to Residential Zone 2, Residential Zone 3 and Tourist Zone 1. There are also special cases considered in the Centros de Bairro 1,2 and 3 (Neighborhood Centers).
The Decreto n° 5.412, of 24 October 1985 together with Regulamento n° 15 - Da Proteção Contra Ruídos, regulated by Decreto n° 1.601 of 21 June 1978 indicates maximum levels of noise allowed in theses zones as shown in Table 3:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Destination</th>
<th>Code</th>
<th>Maximum Noise Level Allowed (Day) dB(A)</th>
<th>Maximum Noise Level Allowed (Night) dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona Residencial - 2</td>
<td>Multifamiliar residences and primary schools</td>
<td>ZR-2</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>Zona Residencial - 3</td>
<td>Multifamiliar, shops and services in exclusive buildings</td>
<td>ZR-3</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Zona Turística - 1</td>
<td>Multifamiliar and touristic activities</td>
<td>ZT-1</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Centro de Bairro</td>
<td>Shops</td>
<td>CB de ZR-1</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Centro de Bairro</td>
<td>Shops</td>
<td>CB de ZR-2</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>Centro de Bairro</td>
<td>Shops</td>
<td>CB de ZR-3</td>
<td>65</td>
<td>60</td>
</tr>
</tbody>
</table>

On the other hand the Brazilian Standard NBR 10151/2000 indicates maximum levels for external noise, in dBA, which should be
followed by city regulations according to the type of land use as shown in table 4:

Table IV. Allowable noise limits from selected zones - Brazilian Standards NBR 10151/2000

<table>
<thead>
<tr>
<th>Use</th>
<th>Day dB(A)</th>
<th>Night dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>Business and administrative</td>
<td>65</td>
<td>60</td>
</tr>
</tbody>
</table>

According to the Resolução SMAC nº 198 of 22 February 2002, which enforces standardization of measurement procedures for the assessment of noise pollution, the external levels used as evaluation of criteria, in accordance with NBR 10151/2000 and the similarities among municipal zones, are:

Table V. Guidelines for the comparison between NBR 10151/2000 and local regulations - Rio de Janeiro

<table>
<thead>
<tr>
<th>Use (NBR 10151)</th>
<th>Zone</th>
<th>Day dB(A)</th>
<th>Night dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed, mostly residential</td>
<td>ZR 1, ZR 2</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>Mixed, mostly business and administrative</td>
<td>ZR 3, CB de ZR</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Mixed, with leisure (entertainment) activities</td>
<td>ZT, CB de ZT</td>
<td>65</td>
<td>55</td>
</tr>
</tbody>
</table>

It can be seen that the background noise due to traffic in all selected points shows levels already above of the allowable ones. This background noise shall thus be used as criteria for the assessment.

6. RESOURCES EVALUATION

In order to generate the noise map a lot of effort, in terms of resources like manpower, simulation time, computer resources, information and data acquisition, etc..., must be made. The main objective of this research is not only to provide an adequate overview of the noise impact in Copacabana, but to establish and quantify the difficulties and the necessary resources needed to create a noise map of a city sector like Copacabana and further estimate the costs involved in the mapping of the whole city of Rio de Janeiro.

It is expected clearly that the use of the simulation as tool to create these noise maps shall reduce time, man power necessary and the cost as a whole. Among other things the availability of a precise CAD
database of the topography and buildings is of major concern in this process. The city of Rio de Janeiro, however, does have such a database, although from some years ago. It can be of course easily updated. Actual information about traffic volumes is also an issue which is more difficult to handle. The traffic engineering from the city does possess some information but not from the whole city. Local assessment of the number and type of vehicles in different parts of the cities, specially in residential neighborhoods, must then be accomplished. Nevertheless, as seen in related studies (Pinto et al., 2005), the eventually poor precision of such data might not be a concern.

The equipment needed for the accomplishment of this work was: the software of simulation CADNA, a PC-type computer, a sound level meter Bruel & Kjaer Type 2233 and a calibrator.

The neighborhood of Copacabana has an area of 7.84 km2 and, besides the heavy traffic, there is an enormous amount of buildings which means a great amount of data to be processed and verified. Considering this situation, in order to make the simulation more efficient, the area was divided in nine subsectors which were simulated separately and the obtained maps had been later joined.

The simulation of the whole area took 2 full weeks of running time to be concluded. In the case of the minor sector of Copacabana, the simulation takes 4 hours. These calculation times were obtained by a single computer. The use of a network can improve this remarkably.

Of the carried through measurements, 112 had been considered for the comparison. The measurements of L_{eq} had been carried through during the different days of the week, in the periods of morning, evening and night.

7. CONCLUSIONS

The results in this work demonstrate that the environmental noise is an important issue in Copacabana, Rio de Janeiro. The studied sector, which is characterized by a high population density and by heavy traffic of vehicles from different kinds, presents background levels higher than the recommended by the regulations applicable. The analysis of the results shows that the noise levels in all the measured points in Copacabana, and as can be seen from the noise map, in a large area of the neighborhood are over the allowed values. The main cause being the traffic noise.

The technology of noise mapping demonstrates to be an excellent means to deal with the problem of noises pollution. The simulations are powerful tools to be used in the urban planning. Many parameters must
be known previously or be identified to serve as base for the correct representation of the physical effect. Nevertheless the most laborious, like topography and buildings, can be input to the program almost automatically from CAD databases. The correct modeling of the sound sources plays the most important role in the results.

The noise maps in small scale, as in the case of Copacabana, in Rio de Janeiro, constitutes a real important first step for a future work in the whole city, as already needed in Europe, and may be also enforced in Brazil.

Another important thing to be considered in future works, is the study of the number of inhabitants who are affected by the noise levels.

CADNA-A is an excellent solution for simulation, that allows the acoustic environment of a sector to be assessed, characterizing the sources and its surroundings. Comparing the data measured with the simulated ones there was an excellent agreement.

8. ACKNOWLEDGEMENTS

The authors wish to express their gratitude to 01dB do Brasil Ltda. Which partially supported this work with the software CADNA-A. The authors would also like to thank the government of Federal Republic of Brazil by means of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for the financial support.

References
Decreto nº 1.601, de 21 de Junho de 1978
Decreto nº 5.412, de 24 de Outubro de 1985
Lei nº 3268, de 29 de Agosto de 2001
Manual de CADNA V3.4 Datakustik GMBH, Greifenberg, Germany.
NBR 10151/2000 Acústica - Avaliação do ruído em áreas habitadas, visando o conforto da comunidade - Procedimento
Regulamento nº 15 - Da Proteção Contra Ruídos.
Resolução SMAC nº 198 de 22 de Fevereiro de 2002
la bondad del software de simulación acústica Cadna-A, TecniAcústica Terrassa 2005. PACS:43.50.Sr
Zoneamento Urbano 1999, Prefeitura do Rio de Janeiro.